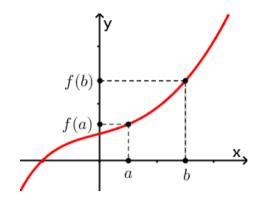
Variations des fonctions

I <u>Sens de variation</u>

1) Fonctions croissantes

Intuitivement:


Une fonction est croissante sur un intervalle I signifie que lorsque x augmente dans I alors son image f(x) augmente aussi.

Graphiquement:

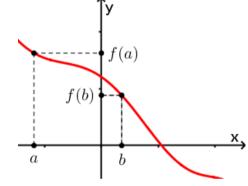
Soit C_f la représentation de f sur l'intervalle I, alors de la gauche vers la droite la courbe C_f "monte"

<u> Algébriquement</u> :

Une fonction est croissante sur un intervalle I lorsque pour tous réels a et b de I, si a < b alors $f(a) \le f(b)$.

2) <u>Fonctions décroissantes</u>

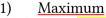
Intuitivement:


Une fonction est décroissante sur un intervalle I signifie que lorsque x augmente dans I alors son image f(x) diminue.

Graphiquement:

Soit C_f la représentation de f sur l'intervalle I, alors de la gauche vers la droite la courbe C_f "descend"

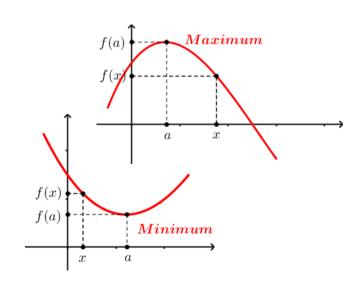
Une fonction est décroissante sur un intervalle I lorsque pour tous réels a et b de I, si a < b alors $f(a) \ge f(b)$.


3) <u>Cas particuliers</u>

Lorsque les inégalités encadrées sont strictes alors la fonction est <mark>strictement croissante</mark> ou strictement décroissante.

Lorsque toutes les images sont égales sur un intervalle I alors la fonction est <mark>constante</mark> sur I. Lorsque le sens de variation est le même sur tout l'intervalle I alors la fonction est <mark>monotone.</mark>

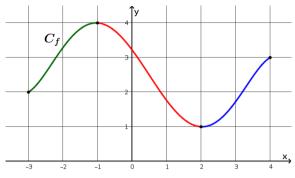
II <u>Extrema</u>


f est une fonction définie sur un intervalle I et $a \in I$

f(a) est un maximum de la fonction f sur I si, pour tout $x \in I$, $f(x) \le f(a)$

2) Minimum

f(a) est un minimum de la fonction f sur I si, pour tout $x \in I$, $f(x) \ge f(a)$



III Tableau de variation

Un tableau de variation résume les variations d'une fonction sur un intervalle.

Exemple:

Soit f une fonction définie sur [-3;4] et représentée ci-contre.

Décrire les variations de f à l'aide de phrases :

Compléter le tableau de variation :

x	
f	

En déduire les extrema de f sur [-3;4]

Compléter :

Pour tout $x \in [-3;4]$, $f(x) \ge \dots$ et $f(x) \le \dots$, autrement dit $\dots \le f(x) \le \dots$

Puisque f est ...

 $\operatorname{sur} \left[\dots \right] = \operatorname{alors} f(0) \dots f(1)$

Puisque f est ...

sur [...; ...] alors f(-2,8)... f(-1,2)

Puisque f est ...

sur [... ; ...] alors f(3,5)... f(2,5)

Exercice 1 : Soit la fonction $g(x)=2x^3+3x^2-12x-15$.

- a) Sur la calculatrice, tracer la courbe représentative de la fonction g puis dresser son tableau de variation sur l'intervalle [-3;3].
- b) Indiquer les extrema éventuels de la fonction g sur [-3;3].

Exercice 2: Voici le tableau de variation d'une fonction h sur [-2;9]

X	-2	0	4	6	9
h	3	4	-1	3	-4

- a) Indiquer les extrema éventuels de la fonction h sur [-2;9].
- b) Donner une représentation graphique possible pour la fonction h.
- c) Possible ou impossible? Justifier.

$$h(5) = -2$$

$$h(-1)=3,2$$

$$h(-1) < h(3)$$
 $h(-1) < h(7)$

$$h(-1) < h(7)$$