Évolution d'une épidémie

On s'intéresse à l'évolution d'une maladie dans une population, de mois en mois.

Cette population se répartit en trois états :

- les individus sains et non immunisés (état 1) ;
- les individus sains et immunisés (état 2) ;
- les individus malades (état 3).

La moitié des individus à l'état 1 le n-ième mois restent sains le mois n+1 alors que l'autre moitié tombe malade.

Un quart des malades restent dans cet état du mois n au mois n+1.

Parmi ceux qui sont sains et immunisés le n-ième mois, 5 % retournent dans l'état 1 le mois suivant et les autres restent immunisés.

Avant l'épidémie, à l'instant 0, tous les individus sont dans l'état 1. Chaque mois, on choisit un individu dans la population et on note X_n l'état dans lequel cet individu se trouve.

- 1) À quel ensemble appartient la variable aléatoire X_n ?
- 2) Représenter le modèle d'évolution à l'aide d'un graphe probabiliste.
- 3) Pour tout entier naturel n, soit π_n la matrice ligne $(P(X_n=1) P(X_n=2) P(X_n=3))$ donnant la loi de X_n .
 - a) Préciser π_0 .
 - b) Établir la relation matricielle liant π_{n+1} à π_n .
 - c) En déduire, par récurrence, la relation matricielle liant π_n à π_0 .
- 4) L'immunité collective est obtenue à partir d'un taux de 80 % de la population immunisée. Déterminer le nombre de mois nécessaires pour que cette population atteigne l'immunité collective.