Aspect géométrique des nombres complexes

I Représentation graphique

Le plan est muni d'un repère orthonormé direct $(O; \overrightarrow{u}; \overrightarrow{v})$.

Définition : Soit $z \in \mathbb{C}$, z = a + ib, où $a \in \mathbb{R}$ et $b \in \mathbb{R}$,

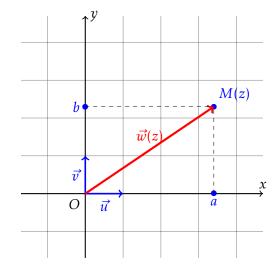
- Le point image de z est le point M(a;b);
- Le vecteur image de z est le vecteur $\overrightarrow{w} \begin{pmatrix} a \\ b \end{pmatrix}$.

<u>Propriété</u> : À tout point M(a;b) du plan correspond un unique nombre complexe z = a + ib.

Définition : z est l'affixe du point M. On note M(z).

Propriété : À tout vecteur $\overrightarrow{w} \begin{pmatrix} a \\ b \end{pmatrix}$ du plan correspond un unique nombre complexe z = a + ib.

Définition : z est l'affixe du vecteur \overrightarrow{w} . On note $\overrightarrow{w}(z)$.



Corollaires:

- Soit z_A et z_B des nombres complexes et les points $A(z_A)$ et $B(z_B)$ alors $A = B \Leftrightarrow z_A = z_B$.
- Soit z_1 et z_2 des nombres complexes et les vecteurs $\overrightarrow{w_1}(z_1)$ et $\overrightarrow{w_2}(z_2)$ alors $\overrightarrow{w_1} = \overrightarrow{w_2} \Leftrightarrow z_1 = z_2$.

<u>Définition</u>: Les points et les vecteurs sont repérés par des nombres complexes donc on parle du <u>plan complexe</u>.

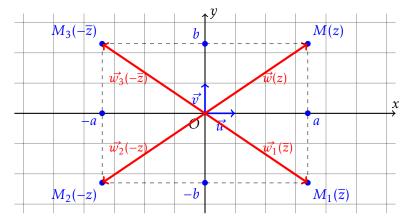
Propriétés : Soit z un nombre complexe, M(z) et $\overrightarrow{w}(z)$.

- z est un nombre réel si, et seulement si, M appartient l'axe des abscisses $(O; \overrightarrow{u})$;
- z est un nombre réel si, et seulement si, \overrightarrow{w} et \overrightarrow{u} sont colinéaires;
- z est un nombre imaginaire pur si, et seulement si, M appartient l'axe des ordonnées $(O; \overrightarrow{v})$;
- z est un nombre imaginaire pur si, et seulement si, \overrightarrow{w} et \overrightarrow{v} sont colinéaires;

II Conjugué et opposé

Propriétés : Soit z un nombre complexe.

- Dans le plan complexe, M(z) et $M_1(\overline{z})$ sont symétriques par rapport à l'axe des abscisses.
- Dans le plan complexe, M(z) et $M_2(-z)$ sont symétriques par rapport à l'origine du repère.
- Dans le plan complexe, M(z) et $M_3(-\overline{z})$ sont symétriques par rapport à l'axe des ordonnées.



III Opérations sur les vecteurs

Propriété: Dans le plan complexe, soit \overrightarrow{w} d'affixe z et $\overrightarrow{w'}$ d'affixe z' alors z + z' est l'affixe du vecteur $\overrightarrow{w} + \overrightarrow{w'}$.

Démonstration 1

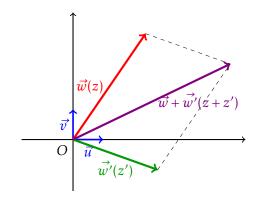
Exercice 1 : Soit $z_1 = 2 - 3i$ et $z_2 = 4 + i$

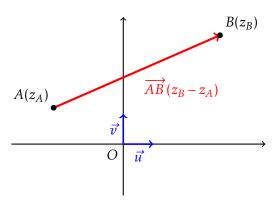
- 1) Calculer $z_1 + z_2$.
- 2) Représenter dans le plan complexe les points M_1 , M_2 et M_3 d'affixe respective z_1 , z_2 et $z_1 + z_2$.
- 3) Quelle est la nature du quadrilatère $OM_1M_3M_2$? Justifier.

 $\frac{\text{Propriét\'e}}{z_A \text{ et } B \text{ d'affixe } z_B \text{ alors le vecteur } \overrightarrow{AB} \text{ a pour affixe } z_B - z_A.$

Démonstration 2

Exercice 2 : Reprendre l'exercice 1 et calculer l'affixe du vecteur $\overrightarrow{M_1M_2}$.

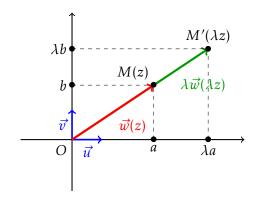




Propriété : Dans le plan complexe, soit \overrightarrow{w} d'affixe z et $\lambda \in \mathbb{R}$ alors λz est l'affixe du vecteur $\lambda \overrightarrow{w}$.

Démonstration 3

Exercice 3: Reprendre l'exercice 1 et calculer l'affixe du vecteur $\overrightarrow{w} = -\frac{3}{2} \overrightarrow{M_1 M_2}$ puis le représenter.



<u>Corollaire</u>: Dans le plan complexe, soit les points A d'affixe z_A et B d'affixe z_B alors le milieu I du segment [AB] a pour affixe $z_I = \frac{z_A + z_B}{2}$.

Démonstration 4

Exercice 4: Reprendre l'exercice 1 et calculer l'affixe de I le milieu du segment $[M_1M_2]$.

<u>Propriété</u>: Dans le plan complexe, soit \overrightarrow{w} d'affixe z alors $\|\overrightarrow{w}\|^2 = z\overline{z}$.

Démonstration 5

Exercice 5 : Reprendre l'exercice 1 et placer le point M_4 d'affixe 5i.

- 1) Justifier que le triangle $M_1M_2M_3$ n'est pas isocèle.
- 2) Justifier que le triangle $M_1M_3M_4$ est rectangle en M_1 .