Les images numériques

I Les différents formats d'images

Il existe deux types principaux d'images numériques, les images vectorielles et les images matricielles.

a) Les images vectorielles

Le principe est de représenter les éléments de l'image par des formules géométriques qui vont pouvoir être décrites d'un point de vue <u>mathématique</u>. Par exemple, un rectangle est défini par deux points, un cercle par un centre et un rayon, une courbe par plusieurs points et une équation.

<u>Avantages</u>:

- Possibilité d'agrandir l'image autant que l'on souhaite sans perte de netteté. A chaque niveau de zoom, les éléments sont recalculés par l'ordinateur.
- Taille des fichiers faible.
- Convient pour des graphiques, schémas, dessins.

<u>Inconvénients</u>:

➤ Ne convient pas pour des photos de paysages, portraits...

Formats:

odg : Open Document Graphique est le format ouvert vectoriel utilisé par la suite LibreOffice.

svg : Scalable Vector Graphics est le format ouvert vectoriel utilisé par Wikipédia.

eps: Encapsulated PostScript est un format ouvert vectoriel utilisé par Adobe.

pdf : Portable Document Format est un format ouvert vectoriel créé par Adobe.

Exemple: Le smiley au format odg de dimensions a pour taille 9,2 ko.

b) Les images matricielles

Une image matricielle est définie par une grille de points appelés pixels auxquels on attribue une couleur.

La <mark>définition</mark> d'une image matricielle correspond au nombre de pixels qu'elle contient. Plus le nombre de pixels est élevé, meilleure est la définition de l'image.

<u>Avantages</u>:

- Même structure que les écrans des ordinateurs, tablettes et smartphones...
- Avec une bonne définition, possibilité de représenter des photos de paysages, portraits...

<u>Inconvénients</u>:

- Pour une définition élevée, la taille de l'image peut devenir importante.
- Dégradation de l'image lorsqu'on l'agrandit : pixellisation.

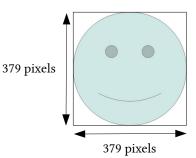
Formats:

bmp : BitMap est un format ouvert matriciel développé par Microsoft et IBM. C'est un format simple, et facilement utilisable par les logiciels mais il est peu utilisé sur le web à cause de la taille volumineuse de ses fichiers.

jpg ou **jpeg** : Joint Photographic Experts Group est un format ouvert matriciel, il est compressé pour réduire la taille des images. Convient à des images de type photographie.

gif : Graphics Interchange Format est un format ouvert matriciel, il est compressé pour réduire la taille des images. Convient à des images de type dessin.

png : Portable Network Graphics est un format ouvert d'image matricielle, il est compressé pour réduire la taille des images. Convient à tout type images.


Exemples: Le smiley avec une définition de 379×379 pixels a pour taille,

432,1 ko en format bmp;

23 ko en format jpg;

4,8 ko en format gif;

9,4 ko en format png.

II Le codage des couleurs

a) Le codage 8 bits = 1 octet

C'est un système très simple dans lequel chaque couleur correspond à un nombre de 0 à 255 codé en binaire. On ne dispose alors d'une palette de 256 couleurs différentes.

Exemple : Le smiley avec une définition de 379×379 pixels. En codant la couleur de chaque pixel sur 1 octet, sa taille est $379 \times 379 \times 1 = 143641$ $o \simeq 144$ ko

b) Le codage 24 bits = 3 octets

Le système de codage des couleurs le plus utilisé est l'espace colorimétrique Rouge, Vert, Bleu (RVB).

- un octet est consacré au rouge donc on dispose de 256 nuances de rouge,
- un autre octet au niveau de vert donc 256 nuances de vert et
- un dernier octet au niveau de bleu donc 256 nuance de bleu.
- Les autres couleurs sont obtenues grâce au système additif ci-contre.

On dispose donc de $256 \times 256 \times 256 = 16777216$ couleurs différentes.

Exemple : Le carré ci-contre est d'une couleur dont les caractéristiques RVB sont les suivantes :

composante rouge : 251, soit en codage binaire (sur 8 bits) 11 111 011;

composante verte : 208, soit 11 010 000 ;

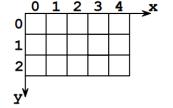
composante bleue : 151, soit 10 010 111.

Le code RVB de cette couleur est donc [251; 208; 151].

En binaire sur 24 bits de cette couleur est codée: 11 111 01111 010 00010 010 111.

Extrait du nuancier de couleurs RVB

Exemple: Le smiley avec une définition de 379×379 pixels.


En codant la couleur de chaque pixel sur 3 octets, sa taille est $379 \times 379 \times 3 = 430923 o \approx 431 ko$.

III La modification des images

Les pixels d'une image matricielle sont repérés suivant le système ci-contre.

Modifier une image consiste donc à repérer un pixel à l'aide de ses coordonnées et à faire une opération sur son code couleur.

Exemple: Sur l'image si contre,

- a) Pour i allant de 0 à 2, coder les pixels de coordonnées (i+1;i) en couleur RVB (255;0;0);
- b) Pour j allant de 0 à 2, coder les pixels de coordonnées (j;2) en couleur RVB (0;255;0);
- c) Pour k allant de 0 à 2, coder les pixels de coordonnées (k+2;0) en couleur RVB (0;0;255).