Nom:

Exercice 1 (8 points)

Les fonctions f et g sont définies sur l'intervalle $\mathbf{I} = [0; +\infty[$ par :

$$f(x) = \frac{1-x}{1+x^3}$$
 et $g(x) = 2x^3 - 3x^2 - 1$.

- 1) Étude de la fonction g.
 - a) Calculer la limite en $+\infty$ de la fonction g.
 - b) Calculer g'(x) la fonction dérivée de g.
 - c) En déduire, en justifiant, le tableau de variation de g sur I.
 - d) Démontrer que l'équation g(x)=0 admet une unique solution α dans I.
 - e) Donner une valeur approchée de α arrondie à 10^{-3} près.
 - f) En déduire le signe de g(x) sur I suivant les valeurs de x.
- 2) Étude de la fonction f.
 - a) Montrer que la courbe représentative de f admet une asymptote en $+\infty$.
 - b) Montrer que la dérivée f ' de la fonction f vérifie, pour tout $x \in I$, $f'(x) = \frac{g(x)}{(1+x^3)^2}$.
 - c) En déduire le tableau de variation complet de f.

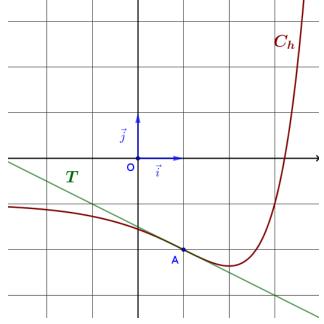
Exercice 2 (7 points)

Le graphique ci-contre fournit la représentation graphique d'une fonction h définie et deux fois dérivable sur l'intervalle $]-\infty;4[$ ainsi que la tangente T à \mathbf{C}_h au point d'abscisse 1.

Par lecture graphique, répondre aux questions suivantes. Aucune justification n'est demandée.

b)
$$h'(1)=...$$
 $h'(2)=...$ $h''(1)=...$

- d) Une équation de T est :
- e) Les asymptotes à C_h ont pour équation :



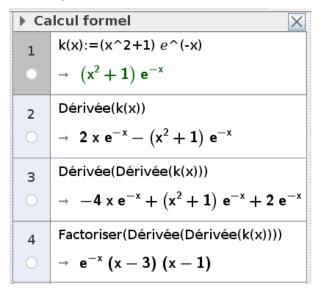
- f) Donner l'intervalle sur lequel *h* est croissante :
- g) Donner l'intervalle sur lequel h est convexe :
- h) Donner l'abscisse du point d'inflexion de C_h :

Exercice 3 (5 points)

On considère la fonction k définie sur \mathbb{R} par $k(x) = (x^2 + 1)e^{-x}$.

La fonction k est deux fois dérivable sur \mathbb{R} .

À l'aide d'un logiciel de calcul formel on a obtenu les résultats suivants :



- 1) De cet affichage, déduire, en justifiant, un tableau de variation de k ' la fonction dérivée de k.
- 2) En déduire le plus grand intervalle sur lequel la fonction k est concave.
- 3) Interpréter graphiquement le résultat de la question précédente en utilisant les mots "sécantes" et "tangentes".