Racine carrée

I <u>L'essentiel</u>

<u>Définition</u>: Pour un nombre positif a, on écrit \sqrt{a} le nombre positif dont le carré est a.

Autrement dit, $(\sqrt{a})^2 = a$.

<u>Remarques</u>:

ightharpoonup Un nombre et son opposé ont le même carré donc on a décidé que \sqrt{a} était le nombre positif.

Un carré est toujours positif donc la racine carrée d'un nombre négatif n'a pas de sens.

$$\underline{Exemples}: \qquad \sqrt{16} =$$

$$\sqrt{0,49} =$$

$$\sqrt{5}$$
 =

$$\sqrt{\pi^2} =$$

$$\sqrt{0}$$

$$\sqrt{1}$$

<u>Propriété</u>: Pour tout nombre a, le nombre a^2 est positif et donc $\sqrt{a^2}$ est défini.

De plus, si a est positif alors $\sqrt{a^2} = a$ et si a est négatif alors $\sqrt{a^2} = -a$.

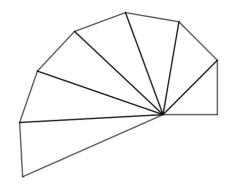
$$\sqrt{(-3)^2} =$$

$$\sqrt{1,2^2} =$$

$$\sqrt{(-\pi)^2}$$

Représentation :

L'escargot de Pythagore fournit des segments dont la longueur est la racine carrée des nombres entiers.



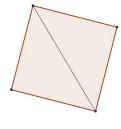
II <u>Les règles de calcul</u>

Propriété: Pour des nombres positifs a et b, $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$.

Exercice 1 : Montrer que $\sqrt{20} = 2\sqrt{5}$.

Exercice 2:

Montrer que la diagonale d'un carré de côté c a pour longueur $c\sqrt{2}$.



Racine carrée

<u>Propriété</u>: Pour des nombres positifs a et b avec $b \neq 0$, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

Exercice 3: Montrer que $\sqrt{\frac{25}{8}} = \frac{5\sqrt{2}}{4}$.

Exercice 4:

Montrer que la hauteur d'un triangle équilatéral de côté c a pour longueur $\frac{c\sqrt{3}}{2}$

<u>Remarque</u>: Pour des nombres positifs a et b, en général, $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$.

$$\underline{\text{Exemple}}: \sqrt{9} + \sqrt{16} =$$

et
$$\sqrt{9+16} =$$